
VICTORIA UNIVERSITY OF WELLINGTON
Te Whare Wānanga o te Ūpoko o te Ika a Māui

School of Engineering and Computer Science
Te Kura Mātai Pūkaha, Pūrorohiko

PO Box 600
Wellington
New Zealand

Tel: +64 4 463 5341
Fax: +64 4 463 5045

Internet: office@ecs.vuw.ac.nz

Development of an IoT System for
Environmental Monitoring

Jolon Behrent

Supervisor: James Quilty

Submitted in partial fulfilment of the requirements for
Bachelor of Engineering with Honours.

Abstract

The Greater Wellington Regional Council currently uses data loggers to mon-
itor the environment. These loggers and accompanying software are provided
by a single supplier which effectively locks the Council into using them for all
monitoring. The Council wants to develop a low-cost, open-source Internet of
Things solution with a connection to a cloud platform. This report looks at the
development of a successful proof-of-concept device capable of reading from
sensors and transmitting the data to Azure.

Contents

1 Introduction and Background 1
1.1 Introduction . 1

1.1.1 Objective . 1
1.1.2 Overview . 2

1.2 Background . 2
1.2.1 HyQuest Solutions Data Loggers . 2
1.2.2 SDI-12 . 3

2 Design 5
2.1 Design Constraints . 5

2.1.1 Power Consumption . 5
2.1.2 Size . 6
2.1.3 Cost . 6

2.2 Microcontroller Selection . 6
2.3 Modem Selection . 7
2.4 Capacitor Selection . 8
2.5 Regulator Selection . 9
2.6 PCB Design . 9
2.7 Enabling Local Wireless Connection . 10

2.7.1 Reed Switches . 11
2.7.2 Hall Effect Sensors . 11

2.8 SDI-12 Design . 11
2.8.1 Voltage Conversion . 11
2.8.2 Data Line Union . 12

2.9 Voltage Protection . 12

3 Implementation 13
3.1 Circuit Design . 13

3.1.1 Power Switching . 13
3.1.2 SDI-12 Hardware . 14
3.1.3 Voltage Protection . 17
3.1.4 Battery Monitoring . 17
3.1.5 Regulators . 19
3.1.6 Capacitor Selection . 20

3.2 Modem to Azure Connection . 21
3.3 PCB Design . 22

3.3.1 Base Board Design . 22
3.3.2 Expansion Board Design . 24

3.4 Hardware Drivers . 25
3.4.1 SDI-12 Driver . 25

i

3.4.2 Battery Driver . 26
3.4.3 SD Card Driver . 27
3.4.4 Modem Driver . 27
3.4.5 LED Driver . 28

4 Evaluation 31
4.1 Power Consumption . 31

4.1.1 SDI-12 Expansion Board . 31
4.1.2 Microcontroller . 32

4.2 Size . 32
4.3 Cost . 34
4.4 Client Feedback . 34
4.5 Voltage Monitoring Accuracy . 34
4.6 Modem Reliability . 35
4.7 Real Time Clock Accuracy . 35
4.8 SDI-12 Reliability . 36
4.9 Voltage Protection . 36
4.10 PCB Revisions . 36

4.10.1 Version 1 PCB . 36
4.10.2 Version 2 PCB . 37

5 Conclusions 39
5.1 Conclusion . 39
5.2 Future Work . 39

5.2.1 Set Up Modem . 39
5.2.2 Fix Current Draw . 40
5.2.3 Rain Gauge . 40
5.2.4 Housing . 40
5.2.5 Radar Sensors . 40
5.2.6 Offline Device . 40

ii

Figures

1.1 Block diagram overview of the entire system. 2
1.2 The TBS01A module . 4

3.1 Circuit diagram of MOSFET switch . 14
3.2 Full implementation of the SDI-12 circuit. The tristate buffers are used as a

complementary pair to prevent transmitted signals from also being received. 16
3.3 Protection circuit including LEDs for user feedback 17
3.4 ADC response compared to the expected response. The ADC inputs have

been scaled to match the DAC outputs. 18
3.5 The voltage levels of the power lines (thin) and the data lines (thick) between

components. 20
3.6 Capacitance and voltage rating of capacitor types 21
3.7 The base board with microcontroller, modem, and expansion board attached. 22
3.8 The possible positions to place the microcontroller, with the optimal positions

being marked by a tick. 23
3.9 Area of base board designed for user interaction. 24

4.1 The efficiency of the TPS562201 (left) compared to the TPS562208 (right). . . . 32
4.2 Plot of current draw against CPU clock frequency. The red line is the line of

best fit, so any values below this line are more efficient than average. 33
4.3 The current draw and time taken to complete a benchmark test for each clock

speed (in MHz). 33
4.4 Comparison of ADC response with and without a lookup table. 35
4.5 First version of the PCB. 37
4.6 Second version of the PCB. These were purchased as a single board that could

be snapped apart. No through-hole components have been soldered in this
image. 38

iii

iv

Chapter 1

Introduction and Background

1.1 Introduction

The Greater Wellington Regional Council (GWRC) monitors the air, land, and water re-
sources of the Wellington region. Their main focus is monitoring the rainfall levels, water
levels, groundwater quality, and air quality. The environment is monitored for many rea-
sons including providing environmental information to the community [1], observing the
impact of things on the environment, and adhering to the requirements of the Resource
Management Act [2].

Internally, the environmental monitoring data is used by the Flood Protection, Environ-
mental Regulation, Resource Consents, and Water Supply teams. These groups need more
data, which means more data loggers are required. The problem is that the data loggers
from GWRC’s current supplier, HyQuest, are expensive, power-hungry, and also lock them
in to only using loggers and software in HyQuest’s ecosystem. As a result, GWRC wants to
switch to an open-source Internet of Things (IoT) alternative for data logging. This will be
beneficial for them as it means they have more control over what the device is capable of,
and the price could be heavily reduced.

1.1.1 Objective

The objective of this project is to develop a low-cost, low-powered, IoT device with fully
open-source hardware. Although the device should be cheaper than the HyQuest devices,
it should not compromise sensor accuracy and device reliability. Many requirements need
to be met for this device to be considered complete [3], the most important hardware re-
quirements are:

• cost between $200 and $300 per device

• ability to communicate with SDI-12 sensors

• ability to monitor rain gauges

• battery powered with a lifespan of 3 months

• small enough to fit inside a tipping bucket rain gauge

• local data storage on SD card

• can be produced and maintained with limited soldering/electronics experience

• connection to cloud server over a low power wide area network, such as the Vodafone
Narrowband Internet of Things (NB-IoT) network

1

Figure 1.1: Block diagram overview of the entire system.

1.1.2 Overview

The system designed for this project is at a functional proof-of-concept stage. An outline of
the system is shown in Figure 1.1. The diagram shows the main parts of the system:

• ESP32, the central processing unit of the data logger.

• Sensors, which can record data from the SDI-12 sensors or get the battery level.

• Data recording, which sends measurements to the SD card and the cloud.

• Input/output, which provides feedback to the user and allows them to wake the de-
vice and enable the WiFi.

• External devices, which are used for setting up the device.

1.2 Background

1.2.1 HyQuest Solutions Data Loggers

The iRIS data loggers are intended to be used for rainfall measurement, river level monitor-
ing, wind measurement, and more. These devices can support a range of sensors, including
but not limited to SDI-12 sensors and rain gauges. SDI-12 refers to the communication pro-
tocol used between the data logger and the sensor. Section 1.2.2 explains this protocol in
more detail; in short, it is a unique protocol designed specifically for low-power environ-
mental monitoring. HyQuest also manufactures tipping bucket rain gauges. These work by
having a small bucket fill up with rain water. When the bucket reaches capacity, it tips and
toggles the output voltage. The output is used by the data logger to determine how many
times the rain gauge has tipped which gives an indication of the amount of rainfall. These
two sensors types, although they are compatible with HyQuest’s proprietary loggers, are
not proprietary themselves, so could interface with any device provided it had the appro-
priate hardware. Both iRIS devices have a small LCD screen and buttons to allow a user to
log in, view the system status, and enable a wired connection to a computer [4, 5].

2

The HyQuest loggers currently work well for GWRC; however, they fall short in a few
areas that are important to GWRC.

• They use power-hungry 3G and 4G technologies for telemetry [4, 5]. This could be
better done with low power wide area technologies, such as Narrowband IoT.

• They are expensive, according to GWRC.

• The types of monitoring GWRC can do is dependent on what products HyQuest offers.
It is not possible for GWRC to customise the functionality of the HyQuest products.

• If HyQuest makes major changes to the products they sell, GWRC has to change too.

• They are difficult to self-repair and maintain if anything goes wrong.

1.2.2 SDI-12

The purpose of this section is to provide some background information about the SDI-12
protocol. Serial Digital Interface at 1200 baud (SDI-12) is a communications standard for
low-powered data recorders. It is specifically designed to be used for collecting environ-
mental data, and GWRC currently uses these sensors for the bulk of their environmental
monitoring. It is similar to the I2C protocol in that it uses only two wires and supports mul-
tiple addressable slave sensors connected to one master device. Where it differs from I2C
is that rather than using a clock line, it sends data at an agreed baud rate, similar to the
Universal Asynchronous Receiver/Transmitter (UART) serial protocol [6].

Electrical Interface

The SDI-12 protocol uses 2–3 wires to provide 12 V power and communicate with the sensor.
In some cases, the 12 V line can be removed and the device can be charged up over the data
line. The data line communicates using half-duplex serial with inverted logic. The three
states of the data line are shown in Table 1.1 [6].

Condition Binary State Voltage Range
marking 1 −0.5–1.0 V
spacing 0 3.5–5.5 V
transition undefined 1.0–3.5 V

Table 1.1: SDI-12 logic levels

Communication

The SDI-12 protocol specifies that data recorders and sensors communicate via the exchange
of printable ASCII characters (with some exceptions) over the data line. “Printable ASCII
characters” refers to those between <space> and ~. As printable ASCII characters do not
use the most significant bit, one “byte” of data is represented by 7 bits. The byte frame for
SDI-12 is 1 start bit, 7 data bits with the least significant bit first, 1 even parity bit, and 1 stop
bit [6].

As mentioned at the start of this section, SDI-12 sensors are addressable. To communi-
cate with a specific sensor, the command must begin with the sensor address which can be
in the range of 0–9. Some sensors also support addressing in the ranges of a–z and A–Z.

3

SDI-12 sensors must be awake to send commands to them. The exact timing parame-
ters of waking a sensor are out of the scope of this report (more information in the SDI-12
specification [6]), however, it involves sending a period of spacing (a break) followed by a
period of marking (a mark). This wakes up all sensors attached to the device, but sensors
that are not addressed will return to sleep after receiving the first command. The current
draw varies between sensors, though it can be as low as 0.5 mA in sleep mode and 6 mA
in active mode [7]. For every additional sensor, the power consumption increases, but this
only has a notable effect during the time following the break being sent until a sensor is
addressed.

Existing Implementation

The TBS01A module supports bi-directional conversion of data into the SDI-12 format and
back. This means that it converts the SDI-12 byte frame into the default UART byte frame:
1 start bit, 8 data bits, no parity, and 1 stop bit at a speed other than 1200 baud. The mod-
ule also automatically handles the sending of breaks, marks, and any other SDI-12 specific
messages [8].

The module is designed to be soldered directly to a circuit board. The module is shown
in Figure 1.2.

Figure 1.2: The TBS01A module
Source: [8]

As with many existing implementations of SDI-12, how it is implemented is unclear. The
TBS01A module uses the “ultra-lower-power” STM8L151 from STMicroelectronics which is
configured in some way to perform all the necessary conversions. The STM8L151 does not
have dedicated hardware for SDI-12, so this will be implemented in software.

4

Chapter 2

Design

Some of the design work done for this project had not been published as existing designs
before. In particular, this relates to the design of the SDI-12 communication circuit which
was designed based purely on the specification for SDI-12. This chapter compares design
decisions that were important in the development of the data logger.

2.1 Design Constraints

The data loggers we developed have some overarching design constraints which influenced
decisions made during the development of several different parts of the project. These con-
straints are listed here and will be referenced in later sections.

2.1.1 Power Consumption

The Greater Wellington Regional Council wants the data loggers to be able to remain pow-
ered for a period of over three months, with a preference for lasting closer to six months.
They currently use deep-cycle lead-acid batteries with a capacity of either 18 or 32 Ah (am-
pere hours). These types of batteries are designed to be discharged almost completely with-
out damaging the battery. As such, close to the entire capacity of the battery can be used.

Using this information and assuming that the entire capacity is used, we can find the
maximum average current draw the data logger can have (in amps) with the following ex-
pression.

I =
Q
t

(2.1)

where Q is the capacity in Ah and t is the time in hours. Table 2.1 shows the current
draw for the batteries over both a three- and six-month period.

I decided to constrain the power consumption to the value for an 18 Ah battery over a
period of three months. This means that GWRC can use any battery and be certain that it
will last for a minimum of three months. As a result, all design decisions must be made in

Capacity
Time

3 months 6 months

18 Ah 8.2 mA 4.1 mA
32 Ah 14.6 mA 7.3 mA

Table 2.1: The maximum average current draw for batteries over 3- and 6-month periods.

5

the context of being limited to drawing an average current of just 7.3 mA. To put this into
context, the HyQuest Solutions data loggers that GWRC currently uses have an operating
current of 7 mA in the lowest power mode [9].

2.1.2 Size

There was no firm specification for the size of the data logger, however, a constraint sug-
gested by GWRC was that the logger be capable of fitting inside a tipping bucket rain gauge,
which is another product from HyQuest. Although time constraints meant we were unable
to implement interfacing with a rain gauge, this is still a good guideline to follow. These
have a diameter of 200 mm and a height of over 300 mm [10]. The majority of the height is
open but only about one-third of the diameter is free space. To have an estimated size to con-
strain the design, I decided the maximum dimension constraint will be 150× 60× 60 mm3,
which means the data logger would be small enough to fit inside the rain gauge with plenty
of remaining space. These dimensions will influence the size of the PCB design as well as
any components selected.

2.1.3 Cost

The maximum GWRC is willing to spend per data logger is $300. This should cover all
components, PCB manufacturing and assembly, and any other additional costs which are
incurred when manufacturing a data logger. During development, the cost of the data log-
ger was measured based on the cost of one device, rather than taking bulk discounts on
components into account. In most cases, this meant that when selecting a component, once
all other hard constraints of the component had been met, the part with the minimum cost
was selected.

2.2 Microcontroller Selection

Early in the project, we set out the requirements for the microcontroller, which specified the
features which were required and the ones that would be useful to have. The following
features (listed in order of importance) are what were considered when selecting a micro-
controller.

1. Required A sufficient number of GPIO pins for all external connections. This was
originally estimated as 20, but was later found to be 21.

2. Required Interrupt support to allow the device to be woken by internal and external
interrupts.

3. Required UART driver for communication with SDI-12 sensors and any other periph-
erals.

4. Required Meeting the overarching hardware requirements (Section 2.1).

5. Optional WiFi module for allowing wireless connection to the device from a laptop or
phone.

6. Optional MicroSD card slot to allow data logging to an SD card.

7. Optional NB-IoT mode for transmitting data over the air.

6

Some microcontrollers do have all or most of those features, however, this typically re-
sulted in them being either too expensive, too large, or too power-hungry. The optional
features are listed as such because it is not required that the feature be present on the micro-
controller, as long as it is possible to implement the feature with external components.

The microcontrollers were narrowed down by their ability to be programmed in Python/
MicroPython. The reason behind this decision was that a Python-based language would
allow for more rapid prototyping, which would be beneficial for a project with a relatively
short development period.

Taking the required features into account reduced the large pool of microcontrollers be-
ing considered to either the Espressif ESP32-DevkitC or the MicroPython pyboard.

Pyboard The MicroPython pyboard is a microcontroller development board that is man-
ufactured with MicroPython firmware. It uses a low-powered STM32F405RG ARM micro-
processor which draws 7 mA during normal operation [11]. It can enter a deep sleep mode
to conserve power. The board has 24 GPIO pins available and some of which support inter-
rupts. The board has five UART drivers meaning there are sufficient ways to communicate
with the sensors and with an external modem. There is an on-board SD card slot and the
device supports WiFi.

The biggest downside of the board is its cost. They typically cost upwards of $70. This
accounts for almost one-quarter of the budget for one device.

ESP32 Development Board The Espressif ESP32 is a low-power and low-cost develop-
ment board. It can be flashed to support MicroPython firmware which gives it almost ex-
actly the same functionality as the pyboard. The ESP32 has 22 GPIO pins, which is enough
to support all the required functionality while leaving one pin reserved for future use. The
board has three UART drivers, which is enough for the SDI-12 sensors and an external mo-
dem. It supports both WiFi and Bluetooth, although only WiFi is needed for this project.

The power consumption of the microprocessor is much lower than the pyboard, coming
to only 4 mA during normal operation and dropping to 5 µA when in deep sleep mode. The
board costs only $20, which makes the overall device $50 less expensive than if using the
pyboard.

The ESP32 also has one major benefit over the pyboard in terms of future development.
As GWRC has expressed interest in having support for HyQuest rain gauges as a stretch
goal, the ability to collect frequent data without waking the device is important to consider.
In heavy rain, the rain gauge will be sending pulses up to one per second, which could
mean the device is fully powered for a significant amount of time, which would result in
the battery draining faster than expected. The ESP32 has an additional processor called the
Ultra Low Power coprocessor. This processor remains active even when the device is in deep
sleep. It can access some of the GPIO pins, read the state of them, and record data into RAM
to be accessed when the logger wakes. Since the pyboard does not have a low-powered
coprocessor, it would not be worth considering it for rain gauge purposes. Although the
rain gauge connection was not implemented at the end of the project, this means it will be
possible to include this functionality in the future. As a result, the ESP32 was chosen as the
microcontroller.

2.3 Modem Selection

The modem used for this project needed to be able to communicate over Vodafone’s Nar-
rowband Internet of Things (NB-IoT) network. As such, our selection of modems was heav-

7

ily dependent on what Vodafone had tested and approved for use on their network. Using
a different modem would be possible, but it would mean Vodafone would not offer their
support if issues arose. The modems supported by Vodafone at the time we made a decision
were: Ublox Sara R410M, Quectel BG96, and Telit ME910C1-AU.

The only requirements we had for the modem was that it should be able to communicate
over a protocol supported by the microcontroller, which could be UART, SPI, or I2C. As the
modem was going to be one of the most expensive components, the client had a preference
for a modem that could be removed from a faulty data logger and placed in a functional
one.

There were no clear benefits with using any particular modem as they all offered very
similar features. The ME910C1-AU modem was the lowest price of them all and also was
available in a form factor with pins (rather than solder pads) so could be inserted and re-
moved from headers that could be soldered to the data logger. Due to the form factor, the
modem can only communicate over UART, however, this was sufficient for sending com-
mands to the modem.

2.4 Capacitor Selection

Capacitors are crucial components in the power circuit, used with the voltage regulators,
and on direct current (DC) voltage lines. As capacitors act as short circuits to alternating
current (AC) and open circuits to DC, they are best placed around the inputs to regulators in
order to prevent changes in the input voltage. Without them, any major fluctuations could
cause damage to the regulator. They are placed on the regulator outputs to stabilise the
voltage being fed into other components. Capacitors should also be used near the power
inputs to other components to protect against brownouts, which typically occur when a
component tries to draw too much current before the regulator can respond and provide
more.

There are many different types of capacitors with different properties. In this situation,
the type of capacitor doesn’t matter, as it only needs to meet the capacitance, voltage rating,
and equivalent series resistance (ESR) requirements. Some capacitors achieve these better
than others, which will be discussed here. Specifically, I considered aluminium electrolytic,
tantalum electrolytic, polymer electrolytic, and ceramic capacitors.

Capacitance The capacitance of a capacitor is a measure of its ability to store charge. A
higher capacitance means that more charge is stored for a given voltage. A high ca-
pacitance is beneficial in the previously mentioned power circuitry as means that if a
component draws too much current, the capacitor can supply some charge without
the voltage dropping. Aluminium electrolytic capacitors typically have the greatest
capacitance of the ones mentioned above [12].

Voltage Rating The voltage rating of a capacitor is the maximum voltage that it can have
applied across it. If this voltage is exceeded the capacitor can be damaged, which
can be dangerous if aluminium or tantalum capacitors are selected as they will leak
or explode. Regardless, the voltage rating that is chosen should be greater than the
maximum expected voltage by about 50% in most cases. Ceramic capacitors can be
made with much higher voltage ratings that any of the other types [12].

Equivalent Series Resistance The equivalent series resistance (ESR) is the resistance to al-
ternating currents passing through the capacitor. As the capacitors are being used to
filter out voltage fluctuations by sending it to ground rather than the circuit, having
more AC resistance is detrimental as it means that it will be more difficult to send the

8

variations to ground. Ceramic and polymer capacitors typically have low ESR which
means they result in greater stability [13].

2.5 Regulator Selection

GWRC plans to power the data loggers with 12 V lead-acid batteries. As the all of the elec-
tronics, with the exception of the SDI-12 sensors, will operate at a lower voltage, the circuit
will need to include some regulators to manage the voltage and current appropriately with-
out using significant amounts of power. Communication with the SDI-12 sensors operates at
5 V (Section 1.2.2)—the highest voltage level used in the electronics—so it would be logical
to use a 5 V regulator as an input to the other regulators to avoid having multiple regula-
tors converting from 12 V to the desired voltage. The only other regulators required for this
design are for the modem and the microcontroller, as almost every other component will be
powered from the 3.3 V output on the microcontroller.

Most components are relatively low-powered, with the exception on the modem, which
can draw up to 600 mA when transmitting data [14]. Both the main, 5 V regulator and the
modem regulator must be able to support that. If not, the modem may not be able to transmit
data reliably. The main regulator must also be able to support the potential current draw of
the other components, which could be an additional 240 mA or more if the microcontroller
was transmitting over WiFi [15]. To account for the worst case scenario, the regulators have
been over-specified so that they must be capable of supply a minimum of 1500 mA.

The main regulator has the potential to have a high amount of current passing though it.
Therefore, it is imperative that it has a high efficiency to avoid needless power draw. Buck
converters—a type of switching regulator—can have peak efficiencies of up to 99 %. This
means that for every milliamp supplied by the battery, the data logger would get 0.99 mA.
As the efficiency increases so does the price, so I decided that the minimum efficiency the
design needed to meet was just 85 %. These regulators are also capable of converting voltage
to current, so a 12 V and 5 mA input could to dropped to a 5 V and 12 mA output. In this
case, the input current is 40 % of the output current.

As the modem regulator is going to be taking the 5 V output of the modem and dropping
it to a lower voltage, it is simpler and cheaper to just use a linear regulator. In particular, a
low dropout regulator would be more likely to be able to reliably regulate the output even
when the input voltage is relatively low. Linear regulators are not as efficient as switching
regulators because they convert the voltage drop over the regulator into heat. However, as
the modem is only going to be on periodically, a linear regulator is much more suitable.

Another important factor I need to consider in the selection of both modems is the qui-
escent current. This is the passive current that flows through the regulator even when no
load is connected. To prevent excessive power consumption while the device is asleep, I
must select a regulator with a suitably low quiescent current. I decided the maximum cur-
rent would be 500 µA for the main regulator, and 100 µA for the modem regulator. Any
current drawn by the modem regulator will need to pass through the main regulator, hence
the lower allowable quiescent current.

2.6 PCB Design

As a project stretch goal, GWRC had asked for the data loggers to support connecting to
HyQuest rain gauges, which operate by sending a pulse to the microcontroller to indicate
that a certain quantity of rain had been collected. As the main goal was to get a logger func-
tioning with SDI-12 sensors, considerations needed to be made around the printed circuit

9

board (PCB) design to facilitate producing rain gauge compatible boards (which are not nec-
essarily compatible with SDI-12 sensors) some time after the completion of this project. The
designs we considered were: a modular design, with SDI-12 circuitry on a separate board;
two separate boards, one for connecting to rain gauges and one for connecting to SDI-12
sensors; or one data logger that can connect to both rain gauges and SDI-12 sensors.

Unified The unified design would involve a single PCB which holds all of the hardware
required for both SDI-12 and rain gauges. This design is good because it means that only
one PCB needs to be manufactured, which can reduce costs. This design has several issues
though. The first issue being that a single board design will be larger in terms of length
and width, however, it is unlikely that it would not meet the size requirements. Having one
system also means that GWRC will have to pay for a full board, even if they aren’t using all
the features of it. Finally, this means that the rain gauge would no longer be a stretch goal, as
it would need to be implemented on the main board from the start. Overall, the downsides
of the unified board design far outweighed any benefits received from it.

Independent The independent design meant that two separate board would be created,
one for SDI-12 and one for the rain gauge, if time permitted. Each PCB could be made
smaller or even shaped in a particular way more easily, which would mean they could fit
in to a particular housing more easily. It would also make the development of the software
simpler, leading to faster development, as the code would only need to be written with
a particular functionality in mind. The biggest downside of this design is that it requires
multiple devices at one site if both rainfall and SDI-12 measurements are being taken. The
biggest cost item for each device is the modem, which would need to be present on both
boards and would increase the overall cost dramatically.

Modular The modular design would have a base board which supports the rain gauge
functionality by default, as it requires only a small amount of additional hardware. The base
board would hold the microcontroller and modem, but would also have headers to attach
an expansion board to the top. The expansion board would have all the hardware required
for SDI-12 functionality. This would mean that GWRC only needs to purchase a base board
for rain gauge functionality, and an SDI-12 expansion board if they want to be able to attach
additional sensors. This design would also open up opportunities to develop expansion
boards for other sensor types, which is something GWRC was considering, without needing
to modify the base board. The only downsides to this were that the software would need
to be written to support different sensor types and the cost would increase slightly due to
additional components needed to support the expansion boards, such as headers.

In the end, the modular design was selected. It has far greater extensibility than the other
designs, allowing GWRC to develop it further in the future to support additional expansion
boards. The modular design is slightly more expensive but offers more benefits and does
not have the same issues as the other options.

2.7 Enabling Local Wireless Connection

One of the requirements for this project was to allow a user to access the device locally
via a wireless connection, i.e. WiFi or Bluetooth. WiFi was selected for various reasons,
including ease of development and speed. The purpose of this section is not to look at
which communication method was selected, rather it will focus on how this is enabled.

10

Since one of the most important constraints of the data logger is that it needs to be low-
powered, it would be detrimental to the battery life if the WiFi was always enabled. Instead,
the data logger needs to offer a user the ability to enable WiFi when they are nearby. The
options we considered were reed switches and hall effect sensors which can be triggered
from a short distance with a magnet.

2.7.1 Reed Switches

Reed switches are made up of two small pieces of metal inside a glass casing which
move to close a circuit when in the presence of a magnetic field. The range of a reed switch
is heavily dependent on the strength of the magnet, so they typically only work from within
a range of a few centimetres. As they involve moving parts, they are prone to switch bounce,
which occurs when the pieces of metal bounce against each other during switching, result-
ing in several pulses being detected [16]. However, this is simple to filter out either with
hardware or software.

2.7.2 Hall Effect Sensors

Hall effect sensors contain a thin sheet of conductive material which allows a voltage to be
produced on the output when subjected to a magnetic field. Depending on the construction
of the sensor, it will output an analogue signal proportional to the intensity of the magnetic
field or a binary signal which is dependent on whether the magnetic field is above some
threshold voltage [17]. Hall effect sensors are not susceptible to switch bounce so no addi-
tional circuitry or software is needed.

Using only a magnetic field sensing element for enabling the WiFi access point on the
device would be problematic as it requires the user to bring a magnet with them (or leave
a magnet at the site) to enable it. To account for this, a non-latching push button was also
added to the logger to provide some redundancy if the hall effect sensor fails or the user
otherwise cannot activate the sensor.

2.8 SDI-12 Design

The SDI-12 protocol is very similar to the commonly-used UART protocol. As practically all
common microcontrollers contain a built-in UART driver, it seemed the most sensible to use
the existing driver and build upon it either by modifying the software or adding additional
hardware to convert between protocols. Two requirements must be met to design a working
UART to SDI-12 converter: voltage conversion and data line union.

2.8.1 Voltage Conversion

The general-purpose I/O (GPIO) pins on the microcontroller all operate at 3.3 V [15], while
the logic level required for reliable SDI-12 communication is 5 V. As the microcontroller will
be both sending and receiving data, there needs to be circuitry that is capable of converting
voltage from 3.3 V up to 5 V for transmitting data, and from 5 V to 3.3 V for receiving.
Implementing this is simple, however, due to the inherent complexity involved with reliably
converting between SDI-12 and UART, it would be beneficial if this could be implemented
with as few parts as possible to minimise cost. It is also important that the current draw
of the conversion circuits is limited especially if the circuit is in an active state by default,

11

as this could cause the battery to drain even when the logger isn’t communicating with the
sensor.

Additionally, the SDI-12 protocol communicates with inverted logic levels [6]. This dif-
fers from most implementations of UART which only support high voltages representing
ones and low voltages representing zeros. In the case of inverted logic levels, a high voltage
represents a zero instead. An inversion step must be done somewhere between the data log-
ger and the sensors to set the logic levels for successful communication between the devices.

2.8.2 Data Line Union

SDI-12 sensors communicate over a single data line [6], while UART is full-duplex meaning
it can communicate in both directions at the same time. This means the data logger, which
has separate lines for transmitting and receiving, needs to be adapted to communicate over
a single line. An ideal solution would result in none of the transmitted commands from the
microcontroller being fed back to the receiving line, otherwise, this would incur a minor
computational cost to remove unwanted data.

2.9 Voltage Protection

In order to provide extra safety to the devices, voltage protection needs to be added to
the battery input. The requirements stated that the device should have overvoltage and
reverse polarity protection. The purpose of voltage protection is to prevent excessively high
voltages from reaching the rest of the circuit, as this could cause significant damage to the
data logger. Reverse polarity protection grounds the entire circuit if the battery is connected
the wrong way as this could also cause damage.

A typical reverse polarity protection circuit uses a Zener diode—which drops a fixed
voltage over it, known as the “Zener voltage” unless the input voltage is less than this
voltage—with a resistor and a MOSFET. Once the input voltage exceeds the Zener volt-
age, the MOSFET will be enabled and the circuit will open. This prevents any voltage that
is not the correct polarity from passing through. If the MOSFET can withstand the input
voltage, it is possible to remove the diode and resistor completely.

Overvoltage protection circuits can be relatively complex, but in the interest of making
the data loggers inexpensive, a simpler overvoltage circuit can be used instead. This circuit
can use just a single Zener diode which would have a Zener voltage not much more than
14–16 V as this will set the maximum input voltage. There is a small resistor before the diode
to slow the current if the voltage exceeds the Zener voltage.

12

Chapter 3

Implementation

3.1 Circuit Design

There were many decisions that needed to be made in the design of this circuit. These are:

• Power switching, to enable and disable SDI-12 sensors and the battery monitor

• SDI-12 logic, to communicate with the sensors

• Voltage protection, to prevent damage if an incorrect power source is attached

• Battery monitoring, to record the voltage of the battery

• Regulators and capacitors, for managing voltages while taking into account the power
considerations

3.1.1 Power Switching

To conserve power, a few parts of the circuit can be switched off and only turned on when
they are needed. This was most important for parts that can draw particularly high cur-
rent, specifically the voltage divider for battery level monitoring and the SDI-12 sensors,
which increases linearly with the number of sensors attached. There are several possible
approaches to switching, but the ones compared here are relays, BJTs, and MOSFETs.

Relays are relatively large switching devices which use a magnetic coil to open and close
a switch. However, as with any magnetic coil, they require current to create a magnetic field.
This means that a relatively substantial amount of current, in the order of milliamps, will
be used to close the switch. They also create electrical noise, which could interfere with any
wireless communication.

Bipolar junction transistors (BJTs) are current-controlled devices, which means they al-
low a current to flow past them when a current is applied as the control signal. Again, as
power consumption is a concern, using a device that relies on current to switch on will have
a negative impact on power consumption.

Metal-oxide-semiconductor field-effect transistors (MOSFETs) are similar to BJTs, except
that they are voltage-controlled rather than current-controlled and consequently have sig-
nificantly lower current draw in operation. One issue with MOSFETs is that more current
will be drawn if the input voltage is different from the control voltage, even when the con-
trol signal switches it off. I fixed this issue by implementing the circuit in Figure 3.1, which
allows the control voltage (3.3 V) to be different to the input voltage (12 V) without affecting
functionality. In that circuit, setting the control signal to low will disable the first MOSFET,

13

Figure 3.1: Circuit diagram of MOSFET switch

which will cause the second MOSFET to open. This allows the input voltage to propagate to
the output. By using large resistors, the passive current draw is reduced to less than 20 µA.

3.1.2 SDI-12 Hardware

Although there are plenty of off-the-shelf solutions for converting common communication
protocols to SDI-12, these usually come at a very steep price, typically costing more than
$100 [18], which is one-third of the budget per device. Most other implementations are not
open-source, so these could not be recreated for this project.

The SDI-12 protocol communicates over a single wire and sends inverted bits at a rate of
1200 bits per second (Section 1.2.2). Due to the similarities of the SDI-12 protocol and UART,
I chose to design a circuit capable of adapting between UART and SDI-12. This meant that
we could use the ESP32’s dedicated UART hardware, rather than implementing the SDI-12
protocol in software. The circuit also needs to be able to convert the 3.3 V signals from the
ESP32 to 5 V signals that the SDI-12 sensors accept, and vice versa.

Potential Solutions

To begin, I will look at solutions that I had considered during development with a short
evaluation of each solution.

Resistor Bridging One of the most difficult parts of the system to implement was com-
bining the transmitting and receiving lines so the device could communicate over a single
wire. A simple way to achieve this would be to connect the transmit and receive lines with
a resistor. Unfortunately, this did not work, and the data received was typically garbled.

RS-485 Transceiver Another option—suggested in an online forum [19]—was to use an
integrated circuit used for communications using the RS-485 protocol. RS-485 is a com-
mon protocol that is even more closely related to SDI-12 than UART is. This chip works by
accepted UART signals and converting them to RS-485. The RS-485 signals are then even
simpler to convert to SDI-12, needing only a small number of additional components.

14

IN1 IN2 AND Tri-state
0 0 0 Z
0 1 0 Z
1 0 0 0
1 1 1 1

Table 3.1: Truth table for AND gate and tri-state buffer. IN1 is being used as the enable input
(Dir) on the tri-state buffer, while IN2 represents either the transmitted or received data. The
state listed as Z is known as high-impedance and refers to an open circuit.

Although the circuit was implemented in the same way as in [19], I could not establish
working communication with the sensor. During testing, I found that the output voltage
going into the SDI-12 sensors was noisy and was typically around 2.3 V when transmitting a
high voltage, much lower than the 3.5–5.5 V range required by the sensors. With more devel-
opment work, it may have been possible to fix any issues with it, but the RS-485 transceiver
chip cost $10—about 1

30 of the budget per device—so I chose to pursue cheaper and poten-
tially more reliable options.

Chosen Solution

One of the benefits of the RS-485 transceiver approach is that it can disconnect the receiving
line when the microcontroller is transmitting. This means that the device does not receive
any redundant data that it then needs to parse out, which would increase the chance of
errors if not parsed properly. To achieve the same operation, I chose to use two tri-state
buffers, which pass the input signal through to the output when the buffer is enabled but
completely disconnects the circuit when disabled. This differs from an AND gate, which
would pull the output to ground and block communication between the logger and the
sensors. The truth tables of a tri-state buffer and an AND gate are compared in Table 3.1.

It would be possible to implement the circuit with a single tri-state buffer on the trans-
mitting line [20], which would simply prevent the transmit line from interfering with the
received signal when it is in a passive state. Adding an additional buffer on the receiving
line with an inverted enable input means the receiver will always be blocked while trans-
mitting, which means none of the transmitted data will be received.

As mentioned in Section 1.2.2, the device must also be able to send a break signal—at
least 12 ms of spacing (see Table 1.1)—to wake the device. The dedicated UART hardware
does not make it possible to send a continuous voltage level, so I needed to develop an
additional circuit to handle that. I observed that when the device is not transmitting, the
transmit pin defaults to a high voltage (3.3 V), so this could be used in conjunction with a
NAND gate and a control signal to send a break. Table 3.2 shows the signal being transmit-
ted to the SDI-12 sensor. When the transmitting line (Tx) is in its default state (1), the output
can be controlled by toggling the force out (FOut) pin between 0 and 1. When FOut is a high
voltage, the output is equal to the inverse of the transmit line. Otherwise, it forces a high
voltage on the transmit line, which represents a break. This is intentional, as the SDI-12 pro-
tocol requires inverted logic levels. The NAND gate I selected is an SN74LS00 as it is capable
of accepting “high” input voltages as low as 2 V, while also outputting high voltages above
3.5 V[21]. The SN74LVC2G241 tri-state buffer can further increase this voltage to 5 V [22],
which allows the transmitting line to shift from 3.3 V up to 5 V without any dedicated volt-
age shifting circuitry. On the receive side, the MOSFET and resistor are used to reduce the
5 V data to 3.3 V to be compatible with the microcontroller. The full implementation of this
circuit is shown in Figure 3.2.

15

Tx FOut OUT
0 0 1
0 1 1
1 0 1
1 1 0

Table 3.2: Truth table for a NAND gate.

Figure 3.2: Full implementation of the SDI-12 circuit. The tristate buffers are used as a
complementary pair to prevent transmitted signals from also being received.

16

Figure 3.3: Protection circuit including LEDs for user feedback

3.1.3 Voltage Protection

The voltage protection from Section 2.9 was implemented in the final circuit design. Perhaps
one of the most significant issues is the lack of indication to the user when the protection has
been triggered. This would be useful as it would let users know when something is wrong.

To provide this information, one LED was added to each circuit. For the reverse polarity
protection, a simple LED circuit protected by a diode was added just before the protection
MOSFET. In any situation where the input voltage is reversed, the LED will turn on, indi-
cating that the battery is improperly connected. In the case of the overvoltage protection, an
LED was added after the Zener diode. Since the voltage drop over an LED is proportional
to the current through it, as the input voltage begins to exceed the Zener voltage, the out-
put voltage will switch from increasing linearly to increasing logarithmically. As expected,
the output voltage increases slowly in the logarithmic region, so the input can safely exceed
20 V without risking damage to the circuit. The full circuit, including LEDs, is shown in
Figure 3.3.

3.1.4 Battery Monitoring

GWRC wants the loggers to return information about the battery’s voltage so they know
when they should replace it. This is simple to achieve with one of the many built-in ana-
logue to digital converters (ADCs) available on the ESP32 microcontrollers. The battery
monitoring is a two-step process that involves the user configuring the ADC on any new
data loggers before the devices can read the voltage properly.

Initial Setup/Provisioning

A linear ADC would be simple to calibrate, and it would involve taking only two measure-
ments and determining the rate of change of the ADC output against the voltage. Unfortu-
nately, the ADCs on ESP32s are notorious for being non-linear [23], meaning the response
deviates as the input voltage increases linearly, as shown in Figure 3.4. After the voltage is
scaled up to 12 V, this error is significant enough that the battery voltage can be inaccurate
by over 1 V. As such, the ADCs typically require some extra calibration to track the voltage
accurately. There were two possible ways I considered for calibrating the ADC. The first was
to develop a regression model, and the second was to use a lookup table. Whichever option
was chosen would need to be set up for every new device, as the ADC response can vary
dramatically between different ESP32s. This means that it would be beneficial for GWRC
if it could be generated by the microcontroller, rather than requiring them to generate it
manually.

The most important thing to note when it comes to linearising the ADC is that the digital
to analogue converters (DAC) on the ESP32 are linear. This means the DAC response can

17

0 50 100 150 200 250

DAC Input

0

50

100

150

200

250

R
e
a
d
in

g

ADC Response without LUT

Expected

Actual

Figure 3.4: ADC response compared to the expected response. The ADC inputs have been
scaled to match the DAC outputs.

be modelled with a straight line equation, so only two voltage measurements need to be
taken. By connecting the DAC to the ADC during the initial setup stage, it can act as a linear
reference. With this information, the DAC values can be converted to a voltage with very
high accuracy.

Regression If regression were chosen for linearising the ADC input, a general model would
first need to be designed that could represent any ADC response curve, as in, it would need
to be at least a second-order model. The key problem here is that it could be higher than a
second-order model, which would increase the computational complexity for generating the
model if more accuracy was desired. It is also possible that the ADC could change suddenly
for a small input voltage change. This would be even more difficult to model with regres-
sion and could even require treating the response as a piecewise function and developing a
model for each segment.

Lookup Table The lookup table (LUT) approach does not have the same issues as using
regression. It can model the response better because it does not need to generate a model; in-
stead, it works by mapping ADC values to DAC values (and, therefore, voltages because the
DAC is linear). Unlike regression, the complexity of the ADC response curve does not in-
crease the complexity of the LUT. One problem with both approaches, which affects the LUT
more than the regression, is that the resolution of the DAC is just 8-bits (256 unique values)
while the ADC is 12-bits (4096 values). This means that there are 3,840 voltage levels that are
unaccounted for in the LUT. To fix this issue, I designed the LUT so that it interpolates be-
tween known readings to generate the missing readings. This results in a mapping made up
of hundreds of linearised regions, which reduces accuracy, whereas the regression model
could be generated without the need for interpolating. The entire LUT also uses around
70 kB of internal storage to store all the required information, whereas the regression model
would only need a few bytes to store the regression coefficients. Regardless, when stored
on an SD card of several gigabytes, either value is insignificant. Ultimately, the lookup table

18

was chosen for this design as it offered more protection against sudden changes in the ADC
response.

Typical Use

With some linearisation implemented, it was still possible for me to improve the precision
of the ADC. This was achieved in two ways. The first was to add a small capacitor to the
input of the ADC. This capacitor was selected to be small enough that it did not have a large
enough time constant to require the ADC to wait for the voltage to settle, but large enough
that it would filter out minor fluctuations in the battery level. A 0.1 µF capacitor placed
close to the ADC input pin was selected for this purpose. The second way that the accuracy
was improved was by taking the average of several readings. By default, the ADC software
driver that I wrote takes 100 readings.

As the maximum input voltage to any general-purpose IO pin on the ESP32 is limited
to 3.3 V [15], the battery voltage—which is typically around 12 V—must be dropped to an
acceptable level to avoid damaging the microcontroller. As shown in Figure 3.4, the ADC
repeats several of the same values at high voltages. To account for this, I decided not to
use the full range of the ADC, to avoid reading the repeated values. Therefore, I designed
a voltage divider that could reduce voltages up to 20 V to 3.3 V. The equation for a voltage
divider is shown in Equation 3.1. The resistors that I chose were R1 = 15 000 kΩ and R2 =
2700 kΩ. This meant that 12 V would be dropped to 1.83 V at the ADC input.

Vout =
R2

R1 + R2
·Vin (3.1)

3.1.5 Regulators

The project’s requirements specified that a 12 V deep-cycle lead-acid battery should power
the device. However, all of the electronics operate at either 3.3 V, 3.8 V or 5 V. More specifi-
cally, the SDI-12 communication circuitry operates at 5 V, the modem operates at 3.8 V, and
everything else, such as the SD card and microcontroller, operates at 3.3 V. Figure 3.5 shows
a breakdown of the voltage levels for the different parts of the system. As shown here, a
single regulator is used to convert the 12 V input down to 5 V, which is then used by all
other components.

The selected microcontroller has its own on-board linear regulator for connecting 5 V
power directly to it and dropping the voltage to 3.3 V. Being a linear regulator will be subject
to some losses; however, the 3.3 V circuitry has a relatively low current draw so these losses
will be small—approximately equal to 1.7 · I, where I is the current and 1.7 is the voltage
dropped by the regulator. The microcontroller has a 3.3 V output pin, which can be used to
power any other low-current logic circuits that operate at that voltage. The presence of an
on-board regulator means that only two regulators (3.8 V and 5 volt) need to be selected for
the data logger.

Main Regulator The regulator must be capable of taking voltages in the range of 10–15 V
and supplying over 1.5 mA with an efficiency greater than 85 % (Section 2.5). A TPS562208
linear regulator was selected to achieve this. This regulator can accept input voltages up
to 17 volt and convert them to 5 V. It is capable of supplying up to 2 A with at least 92 %
efficiency. It has a maximum standby current of 750 µA, which is slightly more than specified
in the design constraints. I allowed this constraint to be ignored because it meant the data
logger did not need to use a more expensive regulator at the cost of only a small amount of
battery life.

19

Figure 3.5: The voltage levels of the power lines (thin) and the data lines (thick) between
components.

Modem Regulator The modem has a nominal input voltage of 3.8 V, although it is possible
to power it at voltages of 3.2–4.5 V. This means it could be powered by a 3.3 V supply,
assuming all design suggestions from the modem manufacturer, Telit, were adhered to [14].
In either case, a separate 3.3 V regulator would be needed as the one on the ESP32 would not
be able to supply enough current for the modem. Therefore, I decided that a 3.8 V regulator
would be the best to ensure the modem operates correctly.

As mentioned in Section 2.3, the modem regulator needs to be able to supply a mini-
mum of 600 mA and have a quiescent current of less than 100 mA. The TPS7A7001 was se-
lected for this. It is capable of supplying up to 2 A and has a maximum dropout of 380 mV,
which means the output voltage will never droop. Most regulators do not come with a
3.8 V variant, so this must be configured manually with a voltage divider connected to the
feedback pin. The feedback voltage is a constant—0.5 V for this regulator—so the voltage
divider must be tuned appropriately to convert the output voltage of 3.8 V to the correct
feedback voltage. Equation 3.1 shows how to select the resistors for the voltage divider. Us-
ing Vout = 0.5 V and Vin = 3.8 V, I found that the ratio of the voltage divider needs to be
5
38 .

3.1.6 Capacitor Selection

As seen in Figure 3.6, all capacitors that were considered in Section 2.4 (ceramic, aluminium,
tantalum, and polymer) exist within the range of nanofarads to microfarads, though some-
times on the edges of a particular region. It is unlikely that the input voltage to the data
logger will ever exceed 16 V, so the voltage rating of any capacitor does not need to be any
higher than 25 V (although most of the capacitors I selected are less than this, where ap-
propriate). In order to improve stability, the capacitors need to have low equivalent series
resistance (ESR). Aluminium and tantalum electrolytic capacitors typically have compara-
tively high ESR. Although it is unlikely that the ESR of these capacitors would cause issues,
it was safer to select a polymer or ceramic capacitor to reduce the chance of having issues.
The size of the capacitors is also important. Having capacitors that are too large will increase

20

1 kV

1 pF 1 nF 1 µF 1 MF1 kF1 mF 1 F

Capacitance

V
o
lt

a
g
e

10 kV

100 kV

100 V

10 V

1 V

er

itors

capacitors

Double-layer

rcapacitors

Tantalum capacitors

with solid electrolyte

Figure 3.6: Capacitance and voltage rating of capacitor types
Source: [24]

the size of the data logger. Therefore, the ideal capacitors to use for the devices are ceramic
capacitors, which can often be the smallest components on the board.

3.2 Modem to Azure Connection

The ME910C1 modem from Telit offers an extensive command set, and Azure IoT Central
provides several methods of connecting to it, which meant there were multiple potential
methods for connecting to IoT Central. The possible ways of connecting were with HTTPS,
MQTT, or an application binary provided by Telit.

HTTPS HTTPS is a secure method of Internet communication that uses Secure Socket
Layer (SSL) or Transport Layer Security (TLS) to send data securely. The data transmit-
ted over HTTPS typically consists of a header and content [25]. The modem has a set of
commands capable of sending HTTPS requests to a specific port on a server. To use HTTPS
with Azure, the HTTP header must contain the symmetric key for that device. The key
is over 100 characters long, and the modem does not allow custom headers to exceed 100
characters [26], which meant it was impossible to use the HTTPS commands the modem.

There is another way to send HTTPS requests with the modem, and it is achieved by
manually opening up a port to communicate over. While the HTTPS command set ab-
stracted away a lot of the setup, using sockets requires much more work to configure. How-
ever, with some work, they allow sending HTTPS data. The entire HTTP header must be
created manually, but its length can be up to 1500 characters long [26].

MQTT MQTT is a lightweight IoT messaging protocol which works by having devices
which publish “topics” to a “broker”. The topics are a form of identification for the data
being transmitted. Another device can then subscribe to a specific topic through the broker
and it will receive any data published to the topic [27]. The packets sent using MQTT are
very small, so the modem would be transmitting for less time, which would result in less

21

Figure 3.7: The base board with microcontroller, modem, and expansion board attached.

power consumption. The modem has commands which allow setting up a secure MQTT
connection to a broker.

Application Binary Telit provides an application binary designed for connecting to Azure.
The binary includes additional commands which make establishing a connection and send-
ing data to IoT Central much easier. Due to the simplicity of this option, this was used for
the implementation.

Unfortunately, due to the way IoT Central works, some of the information needed to
connect to it can change without notice. The modem needs to request the most up-to-date in-
formation from Azure to account for this. This must be done using either MQTT or HTTPS.

3.3 PCB Design

Section 2.6 covered that the printed circuit board (PCB) has been designed to have two sep-
arate boards: a base board and an expansion board. The base board holds the main hardware
required for the device, such as the modem and microcontroller. The expansion board con-
tains all the circuitry for connecting to a battery and interfacing with SDI-12 sensors. The
full board is shown in Figure 3.7. Both boards have a large ground plane, which helps with
counteracting minor electromagnetic interference.

3.3.1 Base Board Design

Headers The base board needs to be able to have the modem, microcontroller, and the
expansion board all connected to it, while also adhering to the size constraints set out in
Section 2.1.2. The connections have been made possible by using female socket headers.
The SDI-12 expansion boards’ headers have been placed on the opposite side to the micro-
controller and modem. The reasoning behind this was that the board could either have a
set of headers on the same side as the microcontroller, which are tall enough that the ex-
pansion board does not touch the microcontroller, or it could be placed on the opposite side
with average-sized headers. As the tall headers are less common and more expensive than
the shorter variants, the expansion board was placed on the opposite side using the short
headers.

22

Figure 3.8: The possible positions to place the microcontroller, with the optimal positions
being marked by a tick.

Source: [28]

Mounting The board has mounting holes on three of its corners. The fourth corner is oc-
cupied by the headers for the expansion board and microcontroller. It would be detrimental
to the performance of the WiFi on the ESP32 if it were moved to another position, as shown
in Figure 3.8, so it would not be possible to have four mounting holes. Regardless, having
three holes is sufficient to hold the data logger in place in a custom housing that could be
developed in the future.

User Interaction In some situations, the data logger may need users to interact with it. The
parts that act as inputs and outputs for a general user are found on the side of the board and
are shown in Figure 3.9. On the right is the button and hall effect sensor, which are used to
enable the data logger’s configure mode. The hall effect sensor is placed as close to the edge
as possible to avoid potential electrical interference from other components and to make it
easier to get a magnet close to it to activate it.

In the middle of the board, there are two sets of headers with jumpers on them. The
right-most jumper is used to select between the connecting the microcontroller’s analogue
to digital converter (ADC) to the battery voltage divider output or the digital to analogue
converter (DAC). The jumper should be moved to the DAC position when calibrating the
device and in the voltage divider position during regular operation. The left-most jumper
is used to select the voltage source for the ADC. It allows the user to choose between the
power from the base board or the expansion board. As there is no need for a base board
power supply due to a lack of rain gauge circuitry, the jumper does not need to be moved.

Finally, there is the LED, which is used to provide feedback to the user about the current
state of the device. It is placed close to the components mentioned above so the user can do
everything they need to without needing to adjust the board.

Servicing and Maintenance When it comes to troubleshooting the device, this has been
made easier with test points. These small holes make it easy for voltages to be tested at
specific points in the circuit. These are especially useful where the point would not usually
be easily accessible, for example, when under a surface-mounted component. The base

23

Figure 3.9: Area of base board designed for user interaction.

board has a total of five test points. These are used to check the voltage on the ADC, the state
of the WiFi enabling button or hall effect sensor, the output of the modem 3.8 V regulator,
the voltage of the power supply into the microcontroller, and ground.

There is also a position for another jumper near the modem. This jumper sits between
the regulated 5 V supply from the expansion board and the 5 V power pin on the microcon-
troller. The jumper short circuits a resistor that is placed between these two points. The
purpose of the resistor is to drop cancel out any voltage differences when both a USB and a
12 V supply are connected simultaneously. Having this mode is useful during development
and debugging. When the device is not connected to a computer via USB, the jumper should
be placed on the header to prevent any voltage from being dropped over the resistor.

SD Card The SD card holder is placed directly underneath the expansion board. This
location was selected to be easy to access while also being protected from any accidental
damage when moving the data logger.

3.3.2 Expansion Board Design

External Connections When not connected to anything, the expansion board is useless. In
order to have any functionality, it must be connected to the base board, a 12 V power source,
and at least one SDI-12 sensor. The connection to the base board is achieved with short
male headers that can fit into the female sockets on the base board. The power and SDI-12
connection is made with push terminals. These are spring-loaded terminals that allow wires
to be inserted when pushed down, and then they tightly clamp onto the wire when released.

Test Points The SDI-12 expansion board has lots of small, complex circuitry. To make it
possible to troubleshoot any issues, the board has nine test points on it. These test points are
connected to the UART transmit and receive lines, the SDI-12 data line, the SDI-12 power
enable line, the reverse polarity protection circuit, and the voltage divider enabling circuit.
There are also test points for the 12 V, 5 V, and ground lines.

24

3.4 Hardware Drivers

The main program can manage the entire system by stepping through all the tasks it needs
to complete [29]; however, it does not know how to interface with the hardware. The pur-
pose of the drivers is to allow the main program to interface with the hardware without
knowing exactly how it works. The main parts of the system that the microcontroller needs
to communicate with are the SDI-12 circuit, the SD card, the voltage monitoring circuit, the
modem, and the diagnostic LED.

3.4.1 SDI-12 Driver

The SDI-12 driver simplifies communication with the SDI-12 hardware. The driver provides
five public functions: an initialiser, two functions for turning the sensor on or off, a function
to read data from the sensor, and a function to send any command to the sensor.

Initialiser The initialiser function sets up the connections to the external hardware and
creates an asynchronous lock (which will be explained later). It creates a connection to the
dedicated UART driver using MicroPython’s UART library and makes connections to the
“direction”, “enable”, and “force out” pins with the Pin library. The direction and force out
pins were shown in Figure 3.2. The enable pin is used to connect power to the sensors using
a switch from Section 3.1.1.

Turn On/Off These functions toggle the enable pin, which will either connect or discon-
nect the 12 V power to the sensors. The function to power the sensors also returns the system
time when the power was connected. This is used to determine if a sensor has had enough
time to boot up fully.

Read Data This function is used for taking measurements from the sensors. The function
accepts information about the sensor it is going to communicate with. It begins by check-
ing that enough time has passed since the turn-on function was called for the particular
sensor being read or waits otherwise. To avoid blocking the rest of the system, it waits asyn-
chronously, which means it surrenders CPU control to other processes before trying again. It
then sends a measure command to the sensor, which tells the sensor to take a measurement.
The sensor does not return the measured data; instead, it tells the driver how long to wait
before requesting it. The driver asynchronously waits for this time before sending the com-
mand to request data. During this time, it enables the lock, which will queue up any other
sensor readings to avoid bus contention, which would happen when the microcontroller
tries to read from another sensor before the first one has responded.

After the time has passed, it sends commands to retrieve the data. If the sensor can take
multiple readings, the driver may need to make several requests to receive all of the data.
The driver will parse all the sensor data and then remove any data except what the user had
requested when configuring the data logger. While it is reading from the sensors, the driver
periodically gives up control to run other tasks. This function will return all of the data the
user requested from a particular sensor.

Send Command The web app for the data loggers offers users the ability to send any
command to the sensor. To achieve this, the driver has a function that can take any command
string as an input. To verify that the command is valid, it checks that it begins with an
address, which must be either an alphanumeric character or a question mark. The command

25

must also end with an exclamation mark, which is used as a termination character in SDI-12.
This function does not verify the response as the function for reading data does. Instead, it
will return the raw response, which can be displayed in the monitor on the web app.

3.4.2 Battery Driver

Lookup Table Setup

The first part of the battery system, which is directly related to the driver, is the provisioning
step. This step allows the user to configure the lookup table (LUT) on the device and is done
when setting up the device for the first time. It requires the user to disconnect the analogue
to digital converter (ADC) from the battery and connect it to the DAC (through the use
of a jumper). The provisioning step guides them through what they need to do through
the command-line interface over a USB connection. It will ask them to record at least two
voltages to calibrate the slope of the ADC. It will ask the user to enter the values of the
resistors in the voltage divider. By default, these are set to the same values as mentioned in
Section 3.1.4—15 000 kΩ and 2700 kΩ.

After this step, the microcontroller automatically generates the LUT by recording the
ADC readings at a range of DAC outputs. As the DAC cannot output quite as many values
as the ADC can take as an input, the missing values are found by interpolating the known
values. The ESP32 does not have enough memory to generate the full LUT and store it in
RAM before saving it to a file. Instead, each time it interpolates between a range, it adds
those values to the LUT file.

The textual representation of the values could vary in length, depending on how many
decimal places they have. This would mean that when trying to retrieve a value from the
LUT, the driver would need to search through the entire file until it reaches the desired
reading. This would have a time complexity of O(n). When n = 4096, these operations
begin to take a noticeable amount of time on an ESP32. This issue can be countered by
converting the numbers to their binary representation, which occupies four bytes. The time
complexity is now O(1), as the battery driver can jump directly to the correct value.

Reading Voltages

The battery driver I wrote provides just two functions. There is an initialiser and a function
to get the level of the battery.

Initialiser The initialiser function sets up the ADC, the DAC, and the pin to enable the
battery voltage divider. By default, the ADC is set to a low resolution and only accepts
very low voltage inputs. This function reconfigures it to have a 12-bit resolution and accept
voltages up to 3.3 V. The enable pin is set to off by default as this disconnects the battery
from the voltage divider, which reduces the current draw to almost zero.

Get Voltage This function has two main steps: taking an ADC reading and converting it
to a voltage. The driver begins by setting the enable pin, which connects the battery to the
ADC. It waits five milliseconds before taking a reading to give the capacitor near the ADC
some time to rise to the battery. It then takes the average of 100 ADC readings rounds it
to the nearest integer. The LUT file is opened, and the driver jumps to the correct position
in the file to reads the next four bytes. For instance, if the ADC reads 2053, the driver will
jump to the 8212th byte (2053× 4) in the file and read the following bytes. It converts this
binary value to a float, and this number is then converted to a voltage using the voltage and
resistor configuration values the user entered during the setup stage.

26

3.4.3 SD Card Driver

MicroPython already has an existing SD card driver which allows the microcontroller to eas-
ily connect to an SD card and add it to the filesystem. Rather than reinventing the wheel, the
SD card driver I developed expands on the existing driver’s current functionality to provide
functions for easily saving files directly to the SD card and checking if the SD card is present.
The SD card is used for several things, including the lookup table, device configuration, data
logging, and system logs. These are all stored on the SD card to allow the user to modify
them on a computer if needed, except for the lookup table, which is stored on the SD card to
avoid storing mutable data in the internal flash memory. The SD card driver developed for
this project also has a function to request the remaining capacity, in bytes, of the SD card.

Data Logging When data is read from the sensors, or the battery’s voltage is requested, the
device sends this data over the air to be logged in Azure. As a form of redundancy, GWRC
requested that the data also be logged to a CSV file on an SD card. This means that data can
be recovered from the file later if any is dropped when being sent.

Whenever the microcontroller wants to log data, it can send it to a logging function on
the SD card. This function accepts any number of readings and the current time in mil-
liseconds since the beginning of the year 2000. The driver formats the time to an ISO 8601
compliant format1. Any data is saved to a new line in the main data logging CSV file. The
same data is also saved to a daily logging file. The daily files exist for redundancy if the
main file gets corrupted. If any of the CSV files do not already exist, they will be created
with the first line containing column names.

System Logs All parts of the data logger developed by us for the project generate system
log information describing what task is currently being done. For example, when a sensor
reads data, the SDI-12 driver would log ”Reading data from sensor at address 1”. Usually,
this data is logged to the terminal, so it can only be viewed if a computer is connected to it.
However, we needed to show real-time log information to the user while also saving it to
the SD card. To achieve this, the SD card driver was programmed to set up a log file when
it is initialised. The logging output is then duplicated and printed both to the terminal and
the logging file. All logging information has the time appended to it unless the current year
is before 2020, indicating that the time has not been synced yet.

3.4.4 Modem Driver

The ME910C1 modem works by having commands sent to it over UART and performing the
action corresponding with the command. The modem has an extensive command set—over
300 commands [26]—but the driver only needs to know the small subset of these required
to establish wireless communication over the Narrowband Internet of Things (NB-IoT) net-
work. The modem driver has functions to initialise it, power it, get the network time, and
connect and send data to Azure IoT Central.

Initialiser and Power The initialiser sets up the hardware pins required to communicate
with the modem. This configures one UART driver with a baud rate of 115200 bits per
second and sets up the wake pin, which keeps the modem turned off by default. It also
configures a lock. The lock works similarly to the one in the SDI-12 driver in that it prevents
concurrent access to the UART data lines.

1Under ISO 8601, the date 31/12/2020 at 1:30pm would be expressed as 2020-12-31T13:30:00+12:00 [30]. The
characters after and including the + represent the timezone offset in hours and minutes from UTC.

27

The modem regulator must be enabled before the modem can wake up. When the micro-
controller calls one of the functions to turn the modem on or off, the power pin will disable
the modem regulator, connecting or disconnecting power from the modem. When the mo-
dem needs to be turned off, the driver first sends a shutdown command to the modem. Once
the modem has disconnected from the network and switched to sleep mode, it returns a OK

response. Upon receiving this response, the regulator will be turned off.

Network Time To provide accurate timestamping of data recordings, the data logger needs
to set the internal system time. The only way it can do this is through the modem. Fortu-
nately, the modem’s command set comes with a clock command, which returns the time
provided by the network. The date and time returned are provided in UTC time, meaning it
will be 12 hours (or 13 hours during daylight saving time) behind the current time in New
Zealand. The command also returns the timezone offset and indicates if the timezone offset
accounts for daylight savings time. Regular expressions are used to parse the time and ex-
tract all the relevant information. The UTC timestamp is converted to local time by adding
the timezone offset minus any daylight savings offset. The driver returns the local date and
time, ignoring daylight savings time.

Send Telemetry All the data collected by the data logger is sent to Azure IoT Central.
To send telemetry to IoT Central, the driver needs to be able to first establish a connection
to Azure’s Device Provisioning Service (DPS). The data logger must connect to this every
time before it can transmit data in case any security information is out of date. DPS returns
a response with the most up-to-date information. With this information, the modem can
attempt to establish a connection with IoT Central. Fortunately, there are applications avail-
able for the modems, provided by the manufacturer, which abstract some of the work away
from sending data to Azure. The commands provided by the application were used, which
immensely reduced the work done by the driver.

Unfortunately, the modem did not end up being completed to the point that it could
send data reliably to IoT Central. This will be discussed more in-depth in the Section 4.6.

3.4.5 LED Driver

There needed to be a way to provide information to the user about the current status of the
data logger. For example, it would be useful for them to know if the logger was currently
on, as that would indicate that they need to wait for the device to safely shut itself down
before they replace the battery or remove the SD card. We decided that an RGB LED was the
best way to achieve this, as it provides several distinct colours that could be used to indicate
various things. The driver provides an interface between the three pins on the LED and the
microcontroller. It has several functions that allow the microcontroller to initialise the LED,
turn it on or off, and set the colour.

Initialiser and Power The initialiser sets up the LED and defines an array of integer colour
values. The initial colour is set to nothing, so the LED will not light up even when turned
on. The LED’s default state is off, so it does not draw current when not providing any
meaningful diagnostics. When the LED is turned on, it will be set to whichever colour the
microcontroller set. When it is turned off, it remembers the colour it was set to, so it does
not need to be set again when turning it back on. The LED also has a toggle function, which
inverts the current state of the LED.

28

Set Colour The LED driver contains two separate functions for setting the colour. One
of them sets the colour with an RGB colour code, and the other uses a hexadecimal colour
code. Unfortunately, the LED’s full functionality has not yet been implemented, but only
one of these functions will be used when it is. There are also functions to return the current
colour in either RGB or hexadecimal.

29

30

Chapter 4

Evaluation

4.1 Power Consumption

The initial requirements for the power consumption set out at the beginning of the project
required the device to draw less than 7.3 mA on average over a three- to six-month period.
It is a certainty that the device will draw more than the average current when active, so it
needs to draw much less current while the device is asleep.

4.1.1 SDI-12 Expansion Board

When the SDI-12 expansion board is powered, it is expected that it will draw some amount
of quiescent current through inactive components. When powering the expansion board
(without the base board), the only active components will be the regulator and the logic
circuits for SDI-12 communication. The SDI-12 sensors will be unpowered by default. Due
to the operation of buck converters (explained in Section 2.5), the current drawn from the
battery is around 40 % the current drawn from the logic circuit.

I tested the current draw of the board at different voltages in the range of 11–13 V. The
results are given in Table 4.1. The results show that regardless of the input voltage, the
SDI-12 expansion board will draw more than the maximum allowable current while doing
nothing.

It is not clear which component is drawing such high current, as the only components
that could be drawing current have low quiescent current. However, it is clear that the se-
lected regulator—a TPS562208—was not fit for purpose and may be contributing to the low
power efficiency. The datasheet for the regulator provides graphs of the regulator efficiency
against the output current. When the regulator operates at low currents, the efficiency can
be less than 20 %, which means that there are plenty of internal losses. The TPS562201 is a
related regulator which has very similar operating properties. The most crucial difference
between this regulator and the TPS562208 is that it has consistently higher efficiency, at up
to 80 % even at low currents. The difference between these two regulators is illustrated in
Figure 4.1. By selecting this regulator instead, the current draw could potentially be reduced
by a factor of at least three. Until then, the current draw means that it is unlikely that the

Voltage (V) 11.0 11.5 12.0 12.5 13.0
Current (mA) 12.50 12.70 13.05 13.22 13.39

Table 4.1: The current draw of the SDI-12 expansion board at different voltages. Measure-
ments were recorded 5 seconds after powering.

31

Figure 4.1: The efficiency of the TPS562201 (left) compared to the TPS562208 (right).

data logger will be able to be powered for much more than 1.5 months on a single 32 Ah
battery.

4.1.2 Microcontroller

When the data logger is not taking measurements and transmitting data, it is in deep-sleep
mode. The purpose of deep-sleep is to put the device into a very low-power state, which
can have a current draw of as low as 150 µA [15]. This value represents the processor’s
current draw and does not account for any peripherals soldered to the ESP32 development
kit. During testing, I found that the current draw during deep-sleep was 3.985 mA. This
is significantly higher than expected, although it is still within the constraints for power
consumption. After removing the on-board LED, the current dropped to 2.443 mA. If we
wanted to reduce the microcontroller’s current draw further, we could consider having the
microprocessor (without the rest of the development kit) soldered directly to the board.

When the data logger is awake and sitting idle, the current draw is much higher than
in deep-sleep. However, it is possible to alter the processor clock frequency to slow down
the device but conserve power. This can be a bit of a trade-off, as it could be a fast device
that completes tasks quickly while consuming a lot of current, or a slow one that must be
powered for longer but has a lower current consumption. The ESP32 can operate at clock
speeds of 20, 40, 80, 160, and 240 MHz [15], so the microcontroller’s current draw was tested
at these speeds. The results are shown in Figure 4.2. This shows that the worst frequency to
operate at might be 80 MHz as it draws significantly more current than the other options.

The next step is to run a simple benchmark test to check the computation speed against
the current draw to indicate which clock speed provides the best performance to current
draw ratio. The benchmark test involved iterating through a for loop and recording the time
taken to finish. As both 20 MHz and 40 MHz operate at very low speeds, they frequently run
into unexpected issues. Therefore, I decided not to analyse them here. As shown in Figure
4.3, the time taken to process tasks is not linearly related to the current drawn. It would
be best to select the 160 MHz clock speed as that has a low current draw without taking a
long time to process. Unfortunately, this would not change the microcontroller’s efficiency
as this is the default clock speed.

4.2 Size

The size of the data logger needs to be constrained by dimensions of 150× 60× 60 mm3.
These dimensions include the entire data logger’s size with the expansion board and micro-

32

0 50 100 150 200 250

Clock Speed (MHz)

10

15

20

25

30

35

40

45

C
u
rr

e
n

t
(m

A
)

Passive current draw for different CPU clock speeds

Current/clock speed

Best fit

Figure 4.2: Plot of current draw against CPU clock frequency. The red line is the line of best
fit, so any values below this line are more efficient than average.

24 26 28 30 32 34 36 38 40 42

Current (mA)

400

500

600

700

800

900

1000

1100

1200

B
e

n
c
h

m
a

rk
 t

im
e

 (
m

s
)

Benchmark time compared to current draw
 80

160

240

Figure 4.3: The current draw and time taken to complete a benchmark test for each clock
speed (in MHz).

33

Part(s) ESP32 Modem PCB Assembly Other Components Total
Price (NZD) 18.18 73.00 53.30 48.20 144.68

Table 4.2: Breakdown of the cost of one device. The PCB Assembly also includes the manu-
facturing of the PCB and the cost of parts.

controller connected to the base board. The length and width of the data logger are fully
dependent on the base board’s dimensions, as this is the largest board. The board’s dimen-
sions are 50.8× 81.28 mm2. The height of the board is 41 mm. Therefore, the board’s overall
dimensions are 81.28× 50.8× 41 mm3, which is within the constraints specified.

4.3 Cost

GWRC expected the cost of one device to be between $200 and $300. Table 4.2 gives the
cost of groups of components. Many of these prices will be subject to bulk discounts, so the
actual device may be even cheaper. This cost does not account for the price of SD cards, a
cellular network contract, batteries, or housing. Regardless, the cost is still within budget,
meaning this is far more affordable than the equipment GWRC currently uses.

4.4 Client Feedback

Ease of Use The client expressed that he was happy with the design of the device and
that it was easy to access everything he needed to. The device’s size was good, although he
would have preferred if the board was slightly thinner. He said that setting up the lookup
table was made easy with the command-line interface instructions. The client’s main is-
sue with the device was that the placement of the modem and the microcontroller made it
difficult to plug a USB cable in the device for uploading code and debugging.

Ease of Manufacture The initial requirements of the project asked that the data loggers
were designed to make it easy for the GWRC team to solder them. The reason was that they
wanted to be able to fix the boards themselves if something breaks, and they were not aware
that the board could also be assembled for a reasonable price during PCB manufacturing.
However, after producing a near-fully assembled board within budget, the client stated that
this was the better option.

4.5 Voltage Monitoring Accuracy

GWRC needs to have accurate voltage measurements to know when they need to go to a site
to replace a battery. A lookup table was implemented, which is used to counteract the non-
linear characteristics of the ESP32’s analogue to digital converter. The non-linearity of the
ADC is shown again in Figure 4.4a. For the lookup table to be successful, we would expect
to see the curve become linear with a gradient of 1; as in, it should track the DAC output.
Figure 4.4b shows the new response of the ADC. This is a major improvement over the
original ADC, and the time taken to convert to the corrected value is practically negligible.

In testing, I found that the voltage read by the device is typically slightly lower than the
actual battery voltage. When at the normal voltage levels (around 12 V), the error is no more
than 40 mV. Although this means that the battery monitoring is slightly incorrect, this can

34

0 50 100 150 200 250

DAC Input

0

50

100

150

200

250

R
e

a
d

in
g

ADC Response without LUT

Expected

Actual

(a) Original ADC response.

0 50 100 150 200 250

DAC Input

0

50

100

150

200

250

R
e

a
d

in
g

ADC Response with LUT

Expected

Actual

(b) Lookup table corrected ADC response.

Figure 4.4: Comparison of ADC response with and without a lookup table.

be beneficial as it encourages users to replace the battery slightly earlier. The client has also
stated that an error of up to 150 mV would be acceptable too, so this error is allowable.

4.6 Modem Reliability

Many attempts were made to get the modems sending data to Azure properly. The first
attempt was to send data using the Azure application binary provided by Telit. This binary
worked great for sending data to IoT Central and was very reliable. The only issue with
this application is that it does not perform the device provisioning step that is required
before connecting to IoT Central. Instead, this was performed manually during testing.
The provisioning step could be done using either MQTT or HTTPS. I first attempted to
use MQTT as it is the most lightweight option, before moving on to implementing it with
HTTPS, and then sockets. Unfortunately, none of these worked as expected.

Ultimately, we decided that it would not be possible to make progress on the modem.
During the attempts to implement the modem, it failed to perform as specified in the doc-
umentation. When contacted about it, Telit support confirmed that some of the commands
present in the documentation described functionality that has yet to be implemented on the
device. As a final resort, the device was reworked to connect to a WiFi hotspot and use it as
a bridge to send data to Azure.

4.7 Real Time Clock Accuracy

The real-time clock (RTC) in the ESP32 is controlled by an internal RC (resistor-capacitor)
oscillator circuit [15]. RC oscillators are designed to keep track of time but can be prone to
clock drift over long periods. A test was performed to verify that the internal RC oscillator
would be appropriate for the device’s timekeeping. This involved setting the RTC to the
current time and then printing what the RTC thinks the current time is for eight hours.

The testing I performed was not extensive; however, it provides enough information to
understand how much the RTC drifts. At the start, the RTC time was the same as the actual
time, though, after the first 1.5 hours, the RTC had lost one full second. After 5 hours, the
RTC time caught up, and the time was correct again. At 7 and 8 hours, the RTC had fallen
behind by about half a second. This shows that the RTC does not just drift in one direction,
so it is unlikely that it will be able to drift very far from the time that it is set to. In any case,
the RTC is updated every time the device boots up, so there is little-to-no chance that the
RTC will drift by more than a few hundred milliseconds under regular operation.

35

4.8 SDI-12 Reliability

The SDI-12 logic circuitry conforms to the guidelines set out in the SDI-12 specification [6].
This means that it should be able to interface correctly with any SDI-12 sensors, not just the
ones used during development. After producing the data logger, the client was able to test it
with additional sensors and confirmed that the device worked on all of them. Overall, four
different sensors worked without requiring any extra work to get them set up, so it is safe
to assume that the data logger will work with any SDI-12 sensor.

4.9 Voltage Protection

Reverse Polarity Protection The reverse polarity protection works as expected. It does
not interfere with the input when the battery is connected correctly but will successfully
cut power from the battery if connected in reverse. Additionally, when reverse polarity
is applied, the LED illuminates itself to indicate to the user that the device is not being
provided power.

Overvoltage Protection When tested independently, the overvoltage protection worked
successfully and would start attenuating the output voltage past the cutoff point. These
tests were performed with a large resistive load on the circuit’s output, which meant that
the small resistor placed in series with the load was negligible. However, the regulator can
pass high amounts of current, which, under Ohm’s law (V = IR), means that the regula-
tor’s equivalent resistance could be small. In this situation, the small resistor is now com-
paratively large, which means a significant voltage is dropped over it, leaving less voltage
available for the rest of the device. The result of this is that the device is unable to power up.

This issue was fixed by removing the overvoltage protection entirely. Ultimately, the
protection is not entirely required because the regulator accepts input voltages up to 17 V,
and it is unlikely that the battery voltage will exceed this. The only other parts of the circuit
are connected directly after the protection circuit are the battery monitoring circuit and the
SDI-12 sensor power line, both of which are turned off by default, so the voltage will not ever
be able to pass through. In future, the battery monitoring line could be used for software
overvoltage protection, in which the user is alerted through the RGB LED when the input
voltage is greater than 15–16 V.

4.10 PCB Revisions

4.10.1 Version 1 PCB

The first versions of the base board and expansion board PCBs were produced in early Au-
gust and were made up entirely of through-hole components, except for the SD card reader.
These boards can be seen in Figure 4.5. These boards had several issues, which are briefly
discussed below.

Size These boards were physically large due to the use of through-hole components, and
the SDI-12 expansion board was longer than the base board. The board had no mounting
holes, so it would have been difficult to mount it inside a case.

36

(a) First version of base board. (b) First version of expansion board.

Figure 4.5: First version of the PCB.

Component Selection Many of the components that we needed were only available in
surface-mount footprints, so in some cases, components that did not have all of the desired
characteristics were used. For example, there are many high efficiency, surface mount buck
converters available that met the project’s requirements. However, it is much harder to find
through-hole regulators with the same properties.

Compenent Placement The placement of some of the components was not optimal either.
For example, some of the jumpers were placed too close to other components, making them
near impossible to move without using tools. The RGB LED was positioned such that it was
under the expansion board, making it more difficult to see.

Functionality Some of the circuits on the version 1 boards did not function properly. In
particular, the overvoltage (refer to Section 4.9) and the battery monitoring circuits did not
function. The battery monitoring circuit was non-functional because a MOSFET switch was
placed with the wrong footprint. Both of these issues were fixed in the version 2 board.

Prodction Time By ordering a board that used only surface mount components, the manu-
facture of the PCB was faster and cheaper as we could order the components separately and
solder them ourselves. Unfortunately, soldering each pair of boards took 2–3 hours, which
meant it could take several days to prepare only ten of them.

4.10.2 Version 2 PCB

Shortly after evaluating the original PCB, I began work on designing the second version.
This PCB began production in late August. This board tried to fix many of the first one’s
flaws, and using surface-mount components helped achieve this. The new board is shown
in Figure 4.6.

Size These boards are much smaller than the version 1 boards, with the use of surface
mount components being a key reason for this. The boards also have mounting holes to
make it easier to mount it inside a case.

37

Figure 4.6: Second version of the PCB. These were purchased as a single board that could be
snapped apart. No through-hole components have been soldered in this image.

Component Selection By using surface mounted components, practically all the parts
needed were available. As we wanted the boards to be produced quickly, we could only
use components available in the PCB manufacturer’s part library. Therefore, some compo-
nents, such as the headers and inductor, have to be purchased separately as through-hole
components to be soldered on by GWRC.

Compenent Placement The placement of some of the components was greatly improved.
The components are now more closely grouped based on which part of the circuit they make
up. The jumpers and LED have been made more accessible by moving them closer to the
board’s edge.

Functionality The entire circuit correctly implements the required functionality. The only
issues experienced thus far have been caused by user error. The only issue is that the board
is not very power efficient, which means it will not last long in the field.

Prodction Time Although the production time was notably longer when the PCBs were
being manufactured, the final things that needed to be soldered could be done within min-
utes. This means that the client needs to do less work to get a data logger set up.

38

Chapter 5

Conclusions

5.1 Conclusion

The goal of this project was to develop an end-to-end data logging system that is capable of
reading data from SDI-12 sensors, saving it to an SD card, and transmitting it to Azure. The
device is able to do this, however, due to difficulties with the modems, the device can only
communicate with Azure via a WiFi hotspot.

The client gave us plenty of positive feedback on the device. Although it will be difficult
to place these devices at normal monitoring sites, they are still usable and have proven that
they can perform all the tasks that the Greater Wellington Regional Council wants them to
do.

We have provided GWRC will some knowledge of how the data loggers work, which
means there is the potential of these being further developed by GWRC or another regional
council in the future to support proper wireless communication over a low-powered wide
area network, without using the same modem as used in this project. This proof-of-concept
design shows that the data loggers that GWRC wanted were possible to produce with almost
all of the required functionality while also meeting their budgetary constraints.

5.2 Future Work

There is still some work that could be done to further improve the end product. The fol-
lowing sections explain what could still be done, and provides some insight into how these
tasks could be achieved.

5.2.1 Set Up Modem

One of the most important parts of the system was the modem. Unfortunately, due to time
constraints and issues with the modem that were out of our control, it was not possible to
get the modems set up so they were communicating with Azure. From the testing that was
performed, it seems that the issue was due to incomplete firmware on the modems which
did not have all of the functionality that was needed. To develop further, it would be better
to use one of the other modems that Vodafone currently supports. These are the Ublox Sara
R410M or the Quectel BG96.

Alternatively, more research could be done into alternative ways of connecting to low-
powered wide area networks in the Wellington region. One suggested path to look into
is using Hologram SIM cards instead. These may allow a wider range of modems to be
used, rather than being restricted to the ones that Vodafone approved. They allow devices

39

to communicate over Cat-M1—a protocol very similar to NB-IoT—and can connect to either
Vodafone or Spark’s networks, depending on which is strongest. The Hologram SIMs also
provide a dashboard that shows the location of all the devices, which could be very useful
for revisiting sites when replacing the battery.

5.2.2 Fix Current Draw

The device currently draws too much current for it to meet the requirement of staying pow-
ered by one battery for over three months becaus the device currently draws over 15 mA
when idle. Although the exact cause of this is uncertain, it seems likely that it is due to the
5 V regulator on the SDI-12 expansion board and the peripherals soldered on to the ESP32
development kit. To fix this issue, the regulator should be changed to a TPS562201 and
the ESP32 development kit could be replaced with the ESP32 chip soldered directly to the
board. There may be other causes for the high current draw, but these would need to be
investigated further.

5.2.3 Rain Gauge

One of the stretch goals for this project was to design the device to read pulses from a tipping
bucket rain gauge. The data logger was designed with the rain gauge in mind, so none of
the components will need to be changed. The only change required is redesigning the base
board to have terminals to connect to the external rain gauges. The code for this needs to
be written for the ESP32’s ultra low power (ULP) coprocessor, which means it will all be
written in assembly. The data logger should be able to read pulses from the rain gauge and
store these in the ULP RAM until the devices wakes up. Once the device wakes, it will save
the data to the SD card.

When designing the rain gauge device, it should also be designed as a standalone device,
for when there is no need for SDI-12 sensors. It should be able to be powered by a lower
voltage battery, such as a 3.7 V LiPo battery.

5.2.4 Housing

One of the initial requirements for the project, which was later dropped from the scope, was
to design a housing for the data loggers. This housing needs to be water resistant while also
being able to connect to external sensors.

5.2.5 Radar Sensors

The client expressed interest in developing a device that could interface with pulsed coher-
ent radar sensors which could be used at some of the sites. This would be implemented as
it’s own expansion board, similar to how there is a separate SDI-12 expansion board. Being
an expansion board, the device software would only need to be modified to support a differ-
ent type of sensor, but the use of the modem and similar parts of the system will remain the
same. The expansion boards are not stackable, so a data logger will only be able to support
either the SDI-12 or the radar sensor expansion board.

5.2.6 Offline Device

Some of the sites that GWRC wants to monitor do not have sufficient network coverage
to send data to the cloud. This means the device should just save data to an SD card. The
biggest issue with this sort of device is having accurate timekeeping, which could only be set

40

when a user visits the site. Testing showed that the real time clock doesn’t drift significantly,
but over a three month period without being updated to the network time, it is inevitable
that the clock will be off by a small but noticeable amount. A potential solution to this would
be to use an external real time clock that can keep the time more accurately than the one built
into the board.

41

42

Bibliography

[1] G. W. R. Council, “Environmental Monitoring and Research.” http://graphs.gw.

govt.nz/. Accessed: 2020-06-02.

[2] G. W. R. Council, “Environmental science.” https://www.gw.govt.nz/

environmental-science/, 2020. Accessed: 2020-06-02.

[3] J. Behrent and B. Secker, “Requirements.” https://gitlab.ecs.vuw.ac.

nz/QuiltyGroup/Research/ENGR489/Environmental-Monitoring-2020/

engr489-project/-/blob/master/docs/requirements/requirements.md, May
2020. Accessed: 2020-05-30.

[4] HyQuest Solutions, iRIS 150FX Datalogger, Apr. 2015. v. 1.40.

[5] HyQuest Solutions, iRIS 350FX Datalogger, Sept. 2018. v. 1.70.

[6] SDI-12 Support Group, River Heights, Utah, SDI-12 A Serial-Digital Interface Standard
for Microprocessor-Based Sensors, January 2019.

[7] HyQuest Solutions, Vented Hydrostatic Pressure Sensor, Oct. 2019.

[8] Tekbox, “TBS01A SDI-12/UART interface module.” https://www.tekbox.com/

product/TBS01A_Datasheet.pdf. Accessed: 2020-05-29.

[9] HyQuest, “iRIS 270 Wireless IP-Capable Datalogger.”

[10] “Model TB3 Tipping Bucket Rain Gauge | HyQuest Solutions.”

[11] “MicroPython pyboard v1.1 with headers.”

[12] KEMET, “What are Aluminum Polymer Capacitors? – KEMET and Mouser Electron-
ics,” Oct. 2017.

[13] J. Falin and J. Cummings, “ESR, Stability, and the LDO Regulator,” tech. rep., Texas
Instruments Incorporated, Feb. 2020.

[14] Telit, ME910C1 HW User Guide, 13 ed., June 2020.

[15] Espressif Systems, ESP32 Series Datasheet, 2020.

[16] “What is a Reed Switch? |Madison Company.”

[17] Honeywell, “Hall Effect Sensing and Application,” tech. rep.

[18] “UART to SDI-12 Interface Slave Module TBS05A.”

[19] AntonieValente, “SDI-12.” https://forum.pycom.io/topic/1924/sdi-12/8, Dec.
2017. Accessed: 2020-05-29.

43

[20] Daycounter, “Sdi-12 bus interface.” https://www.daycounter.com/Circuits/

SDI-12/SDI-12-Interface.phtml, 2019. Accessed: 2020-05-29.

[21] Texas Instruments, SN74LS00 Quadruple 2-Input Positive-NAND Gates, May 2017.

[22] Texas Instruments, SN74LVC2G241 Dual Buffer and Driver with 3-State Outputs, Jan.
2019.

[23] josmunpav, “Inconsistent values when using ”analogRead()” · Issue #92 ·
espressif/arduino-esp32,” Dec. 2016.

[24] Elcap, “English: Capacitance ranges vs voltage ranges of different capacitor types,”
July 2012.

[25] E. Rescorla, “HTTP Over TLS,” May 2020.

[26] Telit, ME910C1 AT Commands Reference Guide, 12 ed., May 2020.

[27] Oasis, MQTT Version 3.1.1, Oct. 2014.

[28] Espressif Systems, ESP32 Hardware Design Guidelines, 2020.

[29] B. Secker, “Development of an IoT System for Environmental Monitoring,” 2020.

[30] “Date and time – Representations for information interchange,” tech. rep., International
Organization for Standardization, Feb. 2019.

44

